Structural inhomogeneity and fiber orientation in the inner arterial media.
نویسندگان
چکیده
The microstructural orientation of vascular wall constituents is of interest to scientists and clinicians because alterations in their native states are associated with various cardiovascular diseases. In the arterial media, the orientation of these constituents is often described as circumferential. However, it has been noted that, just below the endothelial surface, the vascular wall constituents are oriented axially. To further study this reported change in orientation, and to resolve previous observations (which were made under conditions of no load), we used nonlinear optical microscopy to examine the orientation of collagen and elastin fibers in the inner medial region of bovine common carotid arteries. Images were obtained from this part of the arterial wall under varying degrees of mechanical strain: 0%, 10% axial, 10% circumferential, and 10% biaxial. We observed that close to the endothelium these components are aligned in the axial direction but abruptly change to a circumferential alignment at a depth of approximately 20 mum from the endothelial surface. The application of mechanical strain resulted in a significantly greater degree of fiber alignment, both collagen and elastin, in the strain direction, regardless of their initial unloaded orientation. Furthermore, variations in strain conditions resulted in an increase or a decrease in the overall degree of fiber alignment in the subendothelial layer depending on the direction of the applied strain. This high-resolution investigation adds more detail to existing descriptions of complex structure-function relationships in vascular tissue, which is essential for a better understanding of the pathophysiological processes resulting from injury, disease progression, and interventional therapies.
منابع مشابه
Effect of Filter Inhomogeneity on Deep-Bed Filtration Process – A CFD Investigation
Aerosol filtration in fibrous filters is one of the principal methods of removal of solid particles from the gas stream. The classical theory of depth filtration is based on the assumption of existing single fiber efficiency, which may be used to the recalculation of the overall efficiency of the entire filter. There are several reasons for inappropriate estimation of the single fi...
متن کاملLove Wave Propagation in a Fiber-reinforced Layer with Corrugated Boundaries Overlying Heterogeneous Half-space
Love-type wave generation in a fiber-reinforced medium placed over an inhomogeneous orthotropic half-space is analysed. The upper and lower boundary surfaces of the fiber reinforced medium are periodically corrugated. Inhomogeneity of half-space is caused by variable density and variable shear modules. Displacement components for layer and half-space are derived by applying separable variable t...
متن کاملInvestigation of Buckling Analysis of Epoxy/ Nanoclay/ Carbon Fiber Hybrid Laminated Nanocomposite: Using VARTM Technique for Preparation
In the current study the effect of nanoclay content and carbon fiber orientation on the buckling properties of epoxy/nanoclay/ carbon fiber orientation is investigated. Buckling samples were prepared with 1, 3 and 5 wt% of nanoclay and 0, 30 and 45 degrees of fiber orientations based on VARTM technique. The results obtained from the buckling tests showed that adding 1wt% of nanoclay into the pu...
متن کاملFree Vibrations of Continuous Grading Fiber Orientation Beams on Variable Elastic Foundations
Free vibration characteristics of continuous grading fiber orientation (CGFO) beams resting on variable Winkler and two-parameter elastic foundations have been studied. The beam is under different boundary conditions and assumed to have arbitrary variations of fiber orientation in the thickness direction. The governing differential equations for beam vibration are being solved using Generalized...
متن کاملStiffness Prediction of Beech Wood Flour Polypropylene Composite by using Proper Fiber Orientation Distribution Function
One of the most famous methods to predict the stiffness of short fiber composites is micromechanical modeling. In this study, a Representative Volume Element (RVE) of a beech wood flour natural composite has been designed and the orientation averaging approach has been utilized to predict its stiffness tensor. The novelty of this work is in finding the proper fiber orientation distribution func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 298 5 شماره
صفحات -
تاریخ انتشار 2010